Educatly AI
Efficient Chatbot for Seamless Study Abroad Support
Try Now
inline-defaultCreated with Sketch.

This website uses cookies to ensure you get the best experience on our website.

Students
Tuition Fee
USD 27,960
Per year
Start Date
Not Available
Medium of studying
On campus
Duration
Not Available
Program Facts
Program Details
Degree
Bachelors
Major
Mathematics | Statistics
Discipline
Science
Minor
Mathematical Statistics and Probability | Mathematics and Statistics
Education type
On campus
Timing
Full time
Course Language
English
Tuition Fee
Average International Tuition Fee
USD 27,960
Intakes
Program start dateApplication deadline
2023-09-25-
About Program

Program Overview


Course overview

Statisticians are in great demand and if the subject appeals to you, this is the programme for you.





Introduction

Mathematics is a fascinating, beautiful and diverse subject to study. It underpins a wide range of disciplines; from physical sciences to social science, from biology to business and finance. At Liverpool, our programmes are designed with the needs of employers in mind, to give you a solid foundation from which you may take your career in any number of directions.

A Mathematics degree at the University of Liverpool is an excellent investment in your future. We have a large department with highly qualified staff, a first-class reputation in teaching and research, and a great city in which to live and work. You will see a broad range of degree programmes at Liverpool – Mathematics can be combined with many other subjects to widen your options even further.

This course also has the option to take a year abroad in year three. The year abroad is an incredible new opportunity to spend one academic year at one our partner universities expanding your academic and cultural horizons. You’ll spend this time abroad in between your second and third years of study and your degree will extend by one year.

During the year abroad you’ll take a variety of modules. Some modules will be related to the culture, history and society of the country you’re living and others will be discipline-related modules. This mixture means you have a fantastic opportunity to learn in-depth about your host country as well as learn new and exciting knowledge that will complement your degree studies back in Liverpool.





What you'll learn

  • Core fundamentals of mathematics
  • Problem solving
  • Strong communication skills
  • How to communicate and present clearly
  • Program Outline

    Compulsory modules

    Calculus I (MATH101)


    Credits: 15 / Semester: semester 1

    ​At its heart, calculus is the study of limits. Many quantities can be expressed as the limiting value of a sequence of approximations, for example the slope of a tangent to a curve, the rate of change of a function, the area under a curve, and so on. Calculus provides us with tools for studying all of these, and more. Many of the ideas can be traced back to the ancient Greeks, but calculus as we now understand it was first developed in the 17th Century, independently by Newton and Leibniz. The modern form presented in this module was fully worked out in the late 19th Century. MATH101 lays the foundation for the use of calculus in more advanced modules on differential equations, differential geometry, theoretical physics, stochastic analysis, and many other topics. It begins from the very basics – the notions of real number, sequence, limit, real function, and continuity – and uses these to give a rigorous treatment of derivatives and integrals for real functions of one real variable.​ ​

    CALCULUS II (MATH102)


    Credits: 15 / Semester: semester 2

    This module, the last one of the core modules in Year 1, is built upon the knowledge you gain from MATH101 (Calculus I) in the first semester. The syllabus is conceptually divided into three parts: Part I, relying on your knowledge of infinite series, presents a thorough study of power series (Taylor expansions, binomial theorem); part II begins with a discussion of functions of several variables and then establishes the idea of partial differentiation together with its various applications, including chain rule, total differential, directional derivative, tangent planes, extrema of functions and Taylor expansions; finally, part III is on double integrals and their applications, such as finding centres of mass of thin bodies. Undoubtedly, this module, together with the other two core modules from Semester 1 (MATH101 Calculus I and MATH103 Introduction to linear algebra), forms an integral part of your ability to better understand modules you will be taking in further years of your studies.

    Introduction to Linear Algebra (MATH103)


    Credits: 15 / Semester: semester 1

    Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. It is the study of lines, planes, and subspaces and their intersections using algebra.

    Linear algebra first emerged from the study of determinants, which were used to solve systems of linear equations. Determinants were used by Leibniz in 1693, and subsequently, Cramer’s Rule for solving linear systems was devised in 1750. Later, Gauss further developed the theory of solving linear systems by using Gaussian elimination. All these classical themes, in their modern interpretation, are included in the module, which culminates in a detailed study of eigenproblems. A part of the module is devoted to complex numbers which are basically just planar vectors. Linear algebra is central to both pure and applied mathematics. This module is an essential pre-requisite for nearly all modules taught in the Department of Mathematical Sciences.

    Introduction to Statistics using R (MATH163)


    Credits: 15 / Semester: semester 2

    Students will learn fundamental concepts from statistics and probability using the R programming language and will learn how to use R to some degree of proficiency in certain contexts. Students will become aware of possible career paths using statistics.

    Mathematical IT skills (MATH111)


    Credits: 15 / Semester: semester 1

    This module introduces students to powerful mathematical software packages such as Maple and Matlab which can be used to carry out numerical computations or to produce a more complicated sequence of computations using their programming features. We can also do symbolic or algebraic computations in Maple. These software packages have built-in functions for solving many kinds of equations, for working with matrices and vectors, for differentiation and integration. They also contain functions which allow us to create visual representations of curves and surfaces from their mathematical descriptions, to work interactively, generate graphics and create mathematical documents. This module will teach students many of the above-mentioned features of mathematical software packages. This knowledge will be helpful in Years 2, 3 and 4 when working on different projects, for example in the modules MATH266 and MATH371.

    Introduction to Study and Research in Mathematics (MATH107)


    Credits: 15 / Semester: semester 1

    This module looks at what it means to be a mathematician as an undergraduate and beyond. The module covers the discussion of mathematics at university, research mathematics and careers for mathematicians as well as core elements of mathematical language and writing such as logic, proofs, numbers, sets and functions. The activities include sessions delivered by staff on their research areas, sessions by alumni and other mathematicians working outside academia on careers for mathematicians and sessions by careers services. The module also provides key tools needed for studying mathematics at university level. You will explore the core mathematical concepts in more detail in groups and individually and practice communicating mathematics in speech and writing.

    NEWTONIAN MECHANICS (MATH122)


    Credits: 15 / Semester: semester 2

    ​ This module is an introduction to classical (Newtonian) mechanics. It introduces the basic principles like conservation of momentum and energy, and leads to the quantitative description of motions of bodies under simple force systems. It includes angular momentum, rigid body dynamics and moments of inertia. MATH122 provides the foundations for more advanced modules like MATH228, 322, 325, 326, 423, 425 and 431.

    Numbers, Groups and Codes (MATH142)


    Credits: 15 / Semester: semester 2

    A group is a formal mathematical structure that, on a conceptual level, encapsulates the symmetries present in many structures. Group homomorphisms allow us to recognise and manipulate complicated objects by identifying their core properties with a simpler object that is easier to work with. The abstract study of groups helps us to understand fundamental problems arising in many areas of mathematics. It is moreover an extremely elegant and interesting part of pure mathematics. Motivated by examples in number theory, combinatorics and geometry, as well as applications in data encryption and data retrieval, this module is an introduction to group theory. We also develop the idea of mathematical rigour, formulating our theorems and proofs precisely using formal logic.



    Careers and employability

    A mathematically-based degree opens up a wide range of career opportunities, including some of the most lucrative professions.

    Typical types of work our graduates have gone onto include as an actuarial trainee analyst in the audit practice, a graduate management trainee risk analyst and as a trainee chartered accountant on a graduate business programme. Employers value mathematicians’ high level of numeracy and problem solving skills.

    87.5%

    of mathematical sciences graduates go on to work or further study within 15 months of graduation.

    Discover Uni, 2018-19.

    Recent employers of our graduates are:

  • Barclays Bank plc
  • Deloitte
  • Forrest Recruitment
  • Marks and Spencer
  • Mercer Human Resource Consulting Ltd
  • Venture Marketing Group

  • Preparing you for future success

    At Liverpool, our goal is to support you to build your intellectual, social, and cultural capital so that you graduate as a socially-conscious global citizen who is prepared for future success. We achieve this by:

  • Embedding employability within your , through the modules you take and the opportunities to gain real-world experience offered by many of our courses.
  • Providing you with opportunities to gain experience and develop connections with people and organisations, including student and graduate employers as well as our global alumni.
  • Providing you with the latest tools and skills to thrive in a competitive world, including access to Handshake, a platform which allows you to create your personalised job shortlist and apply with ease.
  • Supporting you through our peer-to-peer led Careers Studio, where our career coaches provide you with tailored advice and support.

  • Meet our alumni

    Hear what graduates say about their career progression and life after university.

    Read more about Nicky Moore


    Nicky Moore, BSc (Hons) Mathematics and Statistics

    Read about why Nicky chose to study at Liverpool and the career path she has chosen.

    Read this story


    SHOW MORE