inline-defaultCreated with Sketch.

This website uses cookies to ensure you get the best experience on our website.

Students
Tuition Fee
USD 27,100
Per year
Start Date
Medium of studying
On campus
Duration
36 months
Program Facts
Program Details
Degree
Bachelors
Major
Electronics and Automation | Mechatronics | Robotics Engineering
Area of study
Engineering
Education type
On campus
Timing
Full time
Course Language
English
Tuition Fee
Average International Tuition Fee
USD 27,100
Intakes
Program start dateApplication deadline
2023-10-06-
2024-01-15-
About Program

Program Overview


Robots are increasingly important in our society. They are used in autonomous driving, domestic assistance, health care, industrial manufacturing, search and rescue operations, and hazardous environment exploration and monitoring. Our BEng Robotic Engineering will equip you with the knowledge and skills to contribute to this rapidly-changing and innovative industry, or to academic research in the area. The course uniquely combines electrical engineering and computer science, allowing you to gain both theoretical and practical knowledge in areas such as navigation, motion control, sensory perception, autonomous decision making, and machine learning, so that you can develop your own robotic systems. High programming skills are developed on this course, as well as essential knowledge of areas of robotics and artificial intelligence. Your course therefore covers areas including:
  • Java and C++ programming
  • Sensors, motion control algorithms, and high level cognition in robotic systems
  • Computer vision and digital signal processing
  • Artificial intelligence and intelligent agents
  • Computer games modules
Based in our world-class research lab facilities, you will be able to obtain hands-on experience, test your inventions, and engage in the state of the art robotic research. Our School is a community of scholars leading the way in technological research and development. Today’s robotics engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence. Programming at Essex Teaching someone to programme is about opening a door. In your first year at Essex you will study a module that introduces you to programming using C. We assess your ability to think in a programmatic way in the very first week of term and if you require additional support, we offer classes which will boost your skills and confidence with programming.

Professional accreditation

Accredited by BCS, the Chartered Institute for IT for the purposes of fully meeting the academic requirement for registration as a Chartered IT Professional. Accredited by BCS, the Chartered Institute for IT on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for Incorporated Engineer and partially meeting the academic requirement for a Chartered Engineer. Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer. BEng Robotic Engineering at University of Essex Why we're great.
  • Develop your own robotics systems, using our world-class robot arena to test your inventions.
  • Become part of the next generation of industry professionals and academic researchers to help drive the economy, and push the frontiers of knowledge.
  • We are top 30 in the UK for Computer Science in THE World University Rankings by Subject 2023.

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The four-year version of our degree allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the three-year course. Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised.

Placement year

Alternatively, you can spend your third year on a placement year with an external organisation, where you learn about a particular sector, company or job role, apply your academic knowledge in a practical working environment, and receive inspiration for future career pathways.

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs. Our robotics and embedded systems research group works on interdisciplinary research that combines artificial intelligence, embedded systems architecture and technology, sensors and data fusion, autonomous navigation, planning and human-machine interaction. We research a wide variety of areas, from new drone technology, environment and pollution monitoring to healthcare aids (such as the wheelchair robot and robotic prosthetics). Students will have the opportunity to be involved with current research in their final year projects.

Specialist facilities

Our unique Robotics Gaming Laboratory offers dedicated space for indoor robots and has 24 VICON cameras for racing car tracking. Our Robot Arena is one hundred square metres in area and has a six metre high ceiling to accommodate flying robots. It has one of the world's largest powered lab floors for long-duration experiments with mobile robots. We have invested over £1 million in equipping this state-of-the-art facility with robotic systems which include:
  • thirty wheeled mobile robots
  • eight flying robots
  • three robotic fish
  • three intelligent wheelchairs
  • one robotic arm
  • one robotic hand with five fingers
We also have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress. All computers run either Windows 10 or are dual boot with Linux, and software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project.

Your future

Prepare for your future. Robotics and autonomous systems was recognised as one of the eight great technologies by the UK government in 2013. It was estimated the market for both industrial and service robots will be worth more than $66bn by 2025. As a graduate of our BEng Robotic Engineering, you will be well-placed to take advantage of the growing demand in this area. This is a broad and ever-changing field of study; you will always be learning throughout your career, through following research and trade journals, attending conferences, and working on new research yourself as you create the robots of the future. Being a robotics engineer means that you could be working on humanoid robotic toys, animatronics equipment for amusement parks, robotic equipment for defusing landmines in war-stricken countries, or robots for space and deep sea exploration. Read more about computer science and electronic engineering career destinations here. Our recent graduates have gone on to work for a wide range of high-profile companies including:
  • National Instruments
  • Circad Design Ltd
  • McLaren Formula One Team
  • B&W Group
  • BT
  • IBM
  • Visa
  • Google
  • Microsoft
Our department has a large pool of external contacts, ranging from companies providing robots for the media industry, through vehicle diagnostics, to electronic system design and circuit design and manufacture, who work with us and our students to provide advice, placements and eventually graduate opportunities. We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.

Program Outline

Course structure

Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The following modules are based on the current course structure and may change in response to new curriculum developments and innovation. We understand that deciding where and what to study is a very important decision for you. We’ll make all reasonable efforts to provide you with the courses, services and facilities as described on our website. However, if we need to make material changes, for example due to significant disruption, or in response to COVID-19, we’ll let our applicants and students know as soon as possible.


Components

Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose. Each component has a status and carries a certain number of credits towards your qualification.
Status What this means
Core You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.


Modules

Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits. In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available. Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code . For example, the module code HR100-4-FY means:
HR 100 4 FY
The department or school the module will be taught by. In this example, the module would be taught by the Department of History. The module number. The UK academic level of the module. A standard undergraduate course will comprise of level 4, 5 and 6 modules - increasing as you progress through the course. A standard postgraduate taught course will comprise of level 7 modules. A postgraduate research degree is a level 8 qualification. The term the module will be taught in.
  • AU : Autumn term
  • SP : Spring term
  • SU : Summer term
  • FY : Full year
  • AP : Autumn and Spring terms
  • PS: Spring and Summer terms
  • AS: Autumn and Summer terms
Year 1 Year 2 Final Year Our Team Project Challenge gives you the opportunity to develop a range of professional skills by working as part of a small student team on a specific project. The projects are research-based and incorporate the concepts of specifications, design, and implementation. You’ll learn about sustainability, project and time management, design, legal issues, health and safety, data analysis and presentation, team reporting, and self-evaluation. You’ll also develop skills such as critical thinking and problem solving, agility, leadership, collaboration across networks, and effective oral and written communication, as well as curiosity and imagination, all of which will enhance your knowledge, confidence and social skills necessary to innovate and succeed in a competitive global environment. View Team Project Challenge on our Module Directory You’ll be introduced to some key elements of mathematics that are essential to engineering. You'll develop your understanding through working on examples in class, and through practical laboratory-based exercises using the programming tool, MATLAB. View Mathematics for Engineers on our Module Directory This module will provide you with an introduction to fundamental concepts of computer programming in the C language, which is particularly relevant to programming embedded systems and for electronic engineers. View Intro to Programming with C on our Module Directory Want to become a Java programmer? Topics covered in this module include control structures, classes, objects, inheritance, polymorphism, interfaces, file I/O, event handling, graphical components, and more. You will develop your programming skills in supervised lab sessions where help will be at hand should you require it. View Object-Oriented Programming on our Module Directory This module is one of two concerned with scientific and engineering foundations on which electronics is based. All electronics components are based on physical principles that relate voltage, current flow and the storage or loss of energy. All the theory we need to learn about how circuits behave is based on the fact that electric charge cannot be created or destroyed, and that the energy of each electron just depends on where it is, and how fast it is moving. How charges move in materials depends on their crystal structures. From basic ideas, the main principles of electronics are built up so that they can be used in the wider study of electronics to solve problems. View Foundations of Electronics I on our Module Directory This module develops the fundamental concepts introduced in the Digital Systems Architecture. We examine how data are represented within digital systems, including floating point, 'text' and 'data' files, and how the conversions between internal and human-readable forms are performed. The design and applications of higher-level logic elements such as counters, registers and multiplexers are discussed, as well as the more general concept of the finite state machine and its design. Transmission of digital data between systems is introduced by examination of the RS232 protocol. Further, fundamental decisions on how such sources should be represented in digital format include sample rates and quantization accuracy are discussed. In the case of audio and video especially, the possibilities for signal processing and data compression are investigated View Digital Electronic Systems on our Module Directory This module comprises the second half of our 1st year series on fundamentals of electronics. The module focuses on reactive circuits (i.e., circuits with capacitors and/or inductors), basic semiconductors (i.e., diodes and bipolar junction transistors), electromotive devices, and operational amplifiers. The overview of these devices includes more theoretical concepts (such as Faraday's and Lenz’s laws) as well as more practical topics such as their transient and steady state responses to step and sinusoidal inputs, using phasors for circuit analysis, applications in analogue filters, amplification with feedback, power supply units, and DC motors and generators. The module includes weekly problem solving classes in which calculation exercises are discussed and four weekly lab sessions in which more theoretical concepts are applied to implementation and testing of a DC power supply unit. View Foundations of Electronics II on our Module Directory Computers, embedded systems, and digital systems in general have become an essential part of most people's lives, whether directly or indirectly. The aim of this module is to introduce the software and hardware underpinnings of such systems at an introductory yet challenging level suitable for future computer scientists and engineers. Topics covered in the module include both top-view as well as bottom-view approaches to understanding digital computers. They range from the more theoretical (e.g., state machines, logic circuits, and von Neumann's architecture) to the more practical (e.g., how transistors produce binary signals, operating system functions, memory management, and common hardware devices). The module also includes problem solving classes in which a guided discussion of weekly exercises is aimed at giving the student an opportunity to consolidate his/her understanding of the topics involved. Upon completion of this module, students should have a good conceptual and practical understanding of the nature and architecture of digital computer systems and their components. View Fundamentals of Digital Systems on our Module Directory This module extends the students' knowledge and skills in object-oriented application programming by a treatment of further Java language principles and of important Application Programming Interfaces (APIs). The Java Collections API is explored in some more detail with emphasis on how to utilise these classes to best effect. A particular focus will be on the interaction with databases (e.g. via JDBC) and on writing secure applications. View Application Programming on our Module Directory Data structures and algorithms lie at the heart of Computer Science as they are the basis for the efficient solution of programming tasks. In this module, students will study core algorithms and data structures, as well as being given an introduction to algorithm analysis and basic computability. View Data Structures and Algorithms on our Module Directory Artificial intelligence will be a great driver of change in the coming decades. This module provides an introduction to three fundamental areas of artificial intelligence: search, knowledge representation, and machine learning. These underpin all more advanced areas of artificial intelligence and are of central importance to related fields such as computer games and robotics. Within each area, a range of methodologies and techniques are presented, with emphasis being placed on understanding their strengths and weaknesses and hence on assessing which is most suited to a particular task. View Introduction to Artificial Intelligence on our Module Directory The robots are fast becoming part of our daily lives, autonomous cars will drive themselves, drones will deliver packages, and underwater vehicles will explore the oceans. This module covers fundamental knowledge on sensing, navigation, localisation, motion control, and decision making involved in most robotic platforms. You will be able to construct and program LEGO robots using Java language to perform a range of tasks. View Robotics on our Module Directory Need to build on your mathematical knowledge? Want to apply mathematical skills to engineering? Study the fundamental mathematics for engineering, covering topics like integral transform theory, probability theory, and numerical integration. Gain experience of using Matlab software to understand and solve problems. View Engineering Mathematics on our Module Directory This course covers the principles of project management, team working, communication, legal issues, finance, and company organisation. Working in small teams, students will go through the full project life-cycle of design, development and implementation, for a bespoke software requirement. In this course, students gain vital experience to enable them to enter the computer science/Electrical engineering workforce, with a degree backed by the British Computer Society, and by the Institute of Engineering and Technology. View Team Project Challenge on our Module Directory This module introduces the fundamental knowledge of modern control theory in order to solve complex control problems. It covers dynamic system modelling, MATLAB simulation, stability analysis, controller design, and optimal state controllers and observers. The focus is on theories and techniques in both time and frequency of domains for linear control systems. The module will give you a solid foundation for understanding the principle and operation of control systems, and their potential real-world applications. View Control theory and practice on our Module Directory COMPONENT 08: CORE WITH OPTIONS Option from list (15 CREDITS) The highlight of our undergraduate degree courses is the individual capstone project. This project module provides students with the opportunity to bring together all the skills they have gained during their degree and demonstrate that they can develop a product from the starting point of a single 1/2 page description, provided either by an academic member of staff or an external company. In all the student spends 450 hours throughout the academic year, reporting to their academic tutor, and in the case of company projects, to a company mentor. All projects are demonstrated to external companies on our Project Open Day. View Individual Capstone Project Challenge on our Module Directory Interested in designing, programming and evaluating AI robots? To understand the potential applications for AI in the real world? Study different approaches to the use of AI robotics, along with associated design methodologies. Gain practical experience of building your own autonomous mobile robots and intelligent machines, from sensing to action. View Mobile Robotics on our Module Directory Computer vision is the discipline that tries to understand the content of images and videos. It has an extraordinarily wide range of applications; well-known ones include inspection on production lines, reading number plates, mixing live and computer-generated action in movies, and recognising faces. However, researchers are working on applications such as driverless cars, building 3D models from photographs, robot navigation, gaming interfaces, and automated medical diagnosis -- in fact, whenever you as a human looks at the world and try to understand what you see is fair game for computer vision. This module introduces you to the principles of computer vision through a series of lectures and demonstrations. You have an opportunity to learn how to use these principles and algorithms on real-world vision problems in the associated laboratories using the industry-standard toolkit, OpenCV. View Computer Vision on our Module Directory COMPONENT 04: CORE WITH OPTIONS Option from list (15 CREDITS) COMPONENT 05: CORE WITH OPTIONS Option(s) from list (30 CREDITS)


Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the three-year degree.


Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the three-year degree.


Teaching

  • Courses are taught by a combination of lectures, laboratory work, assignments, and individual and group project activities
  • Group work
  • A significant amount of practical lab work will need to be undertaken for written assignments and as part of your learning


Assessment

  • In your first year, you will have exams before the start of term in January
  • You are assessed through a combination of written examinations and coursework
  • All our modules include a significant coursework element
  • You receive regular feedback on your progress through in-term tests
SHOW MORE
About University
PhD
Masters
Bachelors
Diploma
Foundation
Courses

University of Essex


Overview:

The University of Essex is a public research university located in Colchester, Essex, England. It is known for its strong academic reputation, particularly in the fields of social sciences, humanities, and law. The university offers a wide range of undergraduate and postgraduate programs, as well as short courses and apprenticeships.


Services Offered:

The university provides a comprehensive range of services to its students, including:

    Accommodation:

    Guaranteed, affordable accommodation for new undergraduate and postgraduate students.

    Student Support:

    A variety of support services are available to students, including academic advising, career counseling, and mental health support.

    Careers and Employability:

    The university offers resources and programs to help students develop their career skills and find employment.

    Essex Sport:

    A wide range of sports facilities and activities are available to students, including fitness classes, performance sport, and scholarships.

    Faith:

    The university provides support for students of all faiths.

    Cost of Living Support:

    The university offers financial assistance to students who are struggling with the cost of living.

Student Life and Campus Experience:

Students at the University of Essex can expect a vibrant and diverse campus experience. The university has a strong sense of community, with a variety of clubs, societies, and events to get involved in. The university also has a beautiful campus, with green spaces, lakes, and modern facilities.


Key Reasons to Study There:

    Strong Academic Reputation:

    The university is consistently ranked highly in national and international rankings.

    Excellent Research:

    The university is a leading research institution, with a strong focus on innovation and impact.

    Diverse and Inclusive Community:

    The university is committed to creating a welcoming and inclusive environment for all students.

    Excellent Student Support:

    The university provides a wide range of support services to help students succeed.

    Beautiful Campus:

    The university has a beautiful campus, with green spaces, lakes, and modern facilities.

Academic Programs:

The University of Essex offers a wide range of academic programs, including:

    Undergraduate Programs:

    The university offers a wide range of undergraduate programs in the arts, humanities, social sciences, law, business, and science.

    Postgraduate Programs:

    The university offers a wide range of postgraduate programs, including master's degrees, PhDs, and professional qualifications.

    Short Courses and CPD:

    The university offers a variety of short courses and continuing professional development programs.

Other:

The university has three campuses: Colchester, Southend, and Loughton. The Colchester campus is the main campus and is located in a beautiful parkland setting. The Southend campus is located on the seafront and offers a more urban experience. The Loughton campus is home to the university's drama school, East 15 Acting School.

The university is also home to a number of research centers and institutes, including the Centre for Research in Entrepreneurship, Innovation and Management (REIMI) and the Human Rights Centre.

Total programs
2292
Average ranking globally
#447
Average ranking in the country
#39
Admission Requirements

UK entry requirements

GCSE: Science C/4 A-levels: ABB, including Mathematics or Further Mathematics.
Location
Video
How can I help you today?