Educatly AI
Efficient Chatbot for Seamless Study Abroad Support
Try Now
inline-defaultCreated with Sketch.

This website uses cookies to ensure you get the best experience on our website.

Students
Tuition Fee
USD 26,312
Per year
Start Date
Not Available
Medium of studying
On campus
Duration
48 months
Program Facts
Program Details
Degree
Masters
Major
Biomedical Sciences
Discipline
Science
Minor
Pharmaceutical Biotechnology and Drug Development | Metabolic Pathways
Education type
On campus
Timing
Full time
Course Language
English
Tuition Fee
Average International Tuition Fee
USD 26,312
Intakes
Program start dateApplication deadline
2023-10-06-
2024-01-15-
About Program

Program Overview


With over 100 years of staggering advances in the field, the time to study biochemistry and biotechnology is now. At Essex, you’ll have the opportunity to explore how the processes of life function at molecular level and learn how biotechnology is addressing real-world problems and challenges. The subjects of biochemistry and biotechnology are continually expanding, and our curriculum constantly evolves to reflect the latest findings and their applications. You’ll learn in a friendly and supportive atmosphere and benefit from a research-led education, taught by world-leading experts at the forefront of their fields. At Essex, we specialise in structure-function relationships of biomolecules and use computational approaches and bioinformatics to complement our research. You’ll find that our course has a very high proportion of practical work that provides valuable experience for your career and our research-led teaching addresses the latest challenges and breakthroughs. Topics include:
  • Molecular enzymology
  • Neurodegeneration
  • Structural biology
  • Bioenergetics
  • Metabolism
You’ll also learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
  • The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
  • Industrial, plant and medical biotechnology
  • Gene and protein technology
  • Synthetic biology
  • Bioinformatics
With our Integrated Masters you’ll be able to fast track your degree and complete your final year in nine months compared to a regular MSc which usually takes twelve months. The course will cover key skills in biochemistry and biotechnology and provide you with the knowledge, understanding and hands-on experience required in this rapidly growing area of technology. When you combine your undergraduate and postgraduate study in one degree you’ll be equipped with a strong theoretical background, specialist expertise through independent research and practical insights into current commercial applications. This combination makes graduates from our course attractive candidates for many employers. Visit our biochemistry subject page for more information and content. Why we're great.
  • Network with the technology and pharmaceutical industries, as well as other employers.
  • Work with internationally recognised researchers who are at the cutting-edge of their fields.
  • We are ranked 15th in UK for overall student satisfaction for Biosciences (National Student Survey 2022).

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The five-year version of our Integrated Masters allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the four-year Integrated Masters. Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. If you spend a full year abroad you'll only pay 15% of your usual tuition fee to Essex for that year. You won't pay any tuition fees to your host university

Placement year

You can spend your third year on a placement year with another external organisation. This is usually focused around your course, and enables you to learn about a particular sector, company or job role, apply your academic knowledge in a practical working environment, and receive inspiration for future career pathways. Organisations our students have recently been placed with include GlaxoSmithKline, Proctor & Gamble, Aquaterra, Astrazeneca, Genzyme, Reckitt Benckiser, Thermofisher, and Isogenica. If you complete a placement year you'll only pay 20% of your usual tuition fee to Essex for that year. Our first-year students will have the opportunity to participate in the Science Week at Public Health England (PHE) in Colindale. We have fantastic collaboration with several hospitals in the Eastern Region and beyond, and part of this collaboration is to send all of our second-year students to visit hospitals to have a clear picture about the biomedical science profession. Our final-year undergraduate students have the opportunity to participate in our Employability Day at Essex, and also contribute to the IBMS Congress.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching, where you will learn from and work alongside our expert staff. Our research covers a wide spectrum of biology – from the cell right through to communities and ecosystems. Key academic staff for this course include Dr Jonathan Worrall , who is researching new biotechnological applications of the antibiotic-producing actinobacterium Streptomycetes . The course director for BSc Biochemistry is Dr Brandon Reeder , who focuses on biochemical and biomedical based-research, particularly in the role of proteins in health and disease. The University of Essex has a Women's Network to support female staff and students, and our School was awarded the Athena Swan Silver Award in October 2020, which reflects the work carried out by staff in our School to continue to improve equality, including a mentorship scheme, support for postdoctoral research staff, and financial help towards childcare costs for academics who wish to attend conferences.

Specialist facilities

Recent spending by our University has allowed for major refurbishment and expansion of our School of Life Sciences , including:
  • Work in an open and friendly department, with shared staff-student social spaces
  • State-of-the-art research facilities, from protein crystallisation robots, protein over-production facilities, to CO 2 incubators, to cell imaging microscopes
  • Teaching facilities including new undergraduate laboratories
  • Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies. Recent graduates have gone on to work for the following high-profile organisations including Bupa and SAL Cambridge (microbiology samples). We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities. Visit our careers pages to find out more about careers in life sciences.

Program Outline

Course structure

We offer a flexible course structure with a mixture of compulsory and optional modules chosen from lists. The first three undergraduate years listed below are an example structure from the current academic year. Your course structure could differ from this if modules change from year-to-year. The final Masters year shows you all of the modules currently available (compulsory and optional) so you can see the breadth of what is on offer. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The course content is therefore reviewed on an annual basis to ensure our courses remain up-to-date so modules listed are subject to change. We understand that deciding where and what to study is a very important decision for you. We’ll make all reasonable efforts to provide you with the courses, services and facilities as described on our website. However, if we need to make material changes, for example due to significant disruption, or in response to COVID-19, we’ll let our applicants and students know as soon as possible.


Components

Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose. Each component has a status and carries a certain number of credits towards your qualification.
Status What this means
Core You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.


Modules

Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits. In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available. Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code . For example, the module code HR100-4-FY means:
HR 100 4 FY
The department or school the module will be taught by. In this example, the module would be taught by the Department of History. The module number. The UK academic level of the module. A standard undergraduate course will comprise of level 4, 5 and 6 modules - increasing as you progress through the course. A standard postgraduate taught course will comprise of level 7 modules. A postgraduate research degree is a level 8 qualification. The term the module will be taught in.
  • AU : Autumn term
  • SP : Spring term
  • SU : Summer term
  • FY : Full year
  • AP : Autumn and Spring terms
  • PS: Spring and Summer terms
  • AS: Autumn and Summer terms
Year 1 Year 2 Year 3 Final Year The building blocks of life, plants and animals depend on the actions of individual cells. Investigate the biochemical characteristics of the small molecules and large macromolecules that allow cells to function. You examine the origins of life, cell structure and function, energy transductions, synthesis of molecules, and the eukaryotic cell cycle. View Molecular Cell Biology on our Module Directory Why do we all look different? Are some illnesses hereditary? Are animals born ready-suited to their environment? From the early theories of Mendel to modern studies in molecular genetics, you explore how scientists have answered these questions over the last 150 years. Examine how the structure and function of D allows genetic material to be expressed, replicated and inherited, and consider how genetic variation leads to adaptive evolution. From developing new technologies in gene cloning to the applications for modern medicine, you explore how geneticists are building on the earlier achievements in this fundamentally important field to enhance our understanding of life on earth. View Genetics and Evolution on our Module Directory Microbes are essential for life, and they connect the health of humans, other animals and ecosystems. They help us digest our food, provide us with vitamins and are contribute to our health and wellbeing. Marine microbes provide about one-third of the oxygen we breath. And, by cleaning up pollutants and synthesising valuable products such as antibiotics, microbes are essential for the delivery of the United Nation’s Sustainable Development Goals. On the other hand, some microbes cause devastating diseases. Despite major advances in treatment and prevention, incidences of infectious disease continue to rise. You will learn about the vast diversity and evolution of these mostly beneficial microbes and learn about the pathogenicity of the harmful ones. You will examine how different viruses and bacteria invade, interact and replicate within their hosts. A series of four practical sessions in our new teaching laboratory will give you hands-on experience of growing, observing, purifying, counting and even killing microbes. This will provide you with sought-after skills, such as aseptic technique, serial dilution and data analysis. View Microbiology on our Module Directory Many recent advances in biological research have been born from an increased understanding of the molecules involved in systems and processes. But what do things look like beyond molecular level?<br><br>Study how molecules are formed from individual atoms, and how the properties of these constituent atoms influence molecular structure and reactivity. Examine the fundamental concepts of chemical bonding, electronegativity, acidity, basicity, hydrogen bonding and review the common organic functional groups and different types of isomerism. View General and Organic Chemistry on our Module Directory Explore the building blocks of life. From the proteins that make up our genetic code to the lipids that envelope our cells, explore the structure, function and biological role of the major macromolecules. You investigate the basic principles of protein structural bioinformatics and protein structural evolution, examine how ligand-binding equilibria may form the basis of diverse biological phenomena, learn the structure and properties of monosaccharides and polysaccharides and review the major types of lipids. This module develops key skills in analysis and interpretation of data, biochemical methodology and calculation of biochemical parameters. View Biochemistry of Macromolecules on our Module Directory To fully understand the function of biological systems, we must examine their underlying biochemical principles. You explore the importance of molecules which contain the p-block elements of oxygen, nitrogen, sulphur and phosphorus, concentrating on how their electron structure relates to the action of redox enzymes in metabolism. You also look at the biological role of main-group and transition metal cations.<br><br>You will also review the physical elements of biochemical reactions, including kinetics and thermodynamics. You determine reaction rates, reaction orders and activation energies as well as assessing how thermodynamic parameters affect reactions. View Inorganic and Physical Chemistry on our Module Directory Develop your skillset and boost your CV. This module prepares you for the coursework, laboratory practicals and research projects that you will encounter during undergraduate study. Get to know referencing systems and learn how to effectively communicate scientific information. Use scientific units and simple algebra and demonstrate understanding of logarithms, exponentials, geometry and elementary calculus. Learn how to design experiments, handle data and display, interpret and analyse basic statistics. Teaching and learning will be through a mixture of lectures, classes, practicals and tutorials, with an emphasis on developing the key transferable skills needed for a career in biosciences. View Quantitative methods for Life Sciences on our Module Directory You will develop your transferable skills in scientific writing (including referencing and avoiding plagiarism), teamwork and communication through oral presentations, study and research skills (including essay writing, lecture note taking, use of library and databases). Teaching and learning will be through a mixture of lectures, classes, and tutorials. The emphasis will be on small group, tutorial-style teaching and interaction with other students on this module, with assessments tailored to your degree subject area. View Transferable Skills in Life Sciences on our Module Directory Develop your practical and critical thinking skills during this week-long summer module. Basic knowledge gained from molecular biology is now being applied to solve industrial scale biological problems. You will rationally design bacteria by engineering D and transforming your microbe in the lab before presenting your results to peers. View Employability Skills for the Biosciences on our Module Directory Molecular biology is central to our knowledge of how biology "works" at a molecular level. This module explores the breadth of processes involved in the regulation of gene expression and the proteins that are made. You also discover the ever-expanding range of molecular biology techniques, including PCR, cloning and mutagenesis, and how these are applied to investigate and treat disease. View Molecular Biology: Genes, Proteins and Disease on our Module Directory We are in the age of genomics and scientists have devised new technologies that can generate whole genome sequences in days which would once have taken years to achieve. Learn the high-throughput techniques of next-generation sequencing used to study genomes, the proteome and the interactome. Investigate how nucleotide sequences are analysed, applying the analytical tools used by research scientists and understand how new genes are discovered and their functions revealed. You also discover how our knowledge of gene structure is being applied in the emerging field of synthetic biology to create new organisms and modify existing ones by gene editing. View Genome Science on our Module Directory The study of cells is at the centre of modern biology.  Learn how cellular components determine cell structure and function, how cells communicate and how signaling pathways regulate cell fate.  You also explore the regulation of the cell cycle and cell death and learn about changes that occur in cells that have become cancerous. A solid understanding of cell biology opens doors to more specialist topics, such as plant biotechnology and cancer biology. View Cell Biology on our Module Directory Assess the importance of zinc, copper and iron in biological systems and review how they are kept in stable equilibrium. Explore the structure and functions of proteins and enzymes that contain metal cofactors and discuss the diseases and possible treatments associated with both metal deficiency and overload. View Metals in Biology on our Module Directory Understanding the shape, structure and folding of proteins can provide the basis for drug targeting in disease processes and enable us to develop a better understanding of specific biological pathways. This module takes a look at particular macromolecular assemblies using the most up-to-date structural biological techniques with a particular emphasis on x-ray crystallography. View Proteins and Macromolecular Assemblies on our Module Directory Bioinformatics have become an indispensable skill for the next generation of biochemists and biologists in order to retrieve, analyse and interpret data. You will learn how to access, search and extract data from publicly available protein databases, and analyse and display results using appropriate software. View Protein Bioinformatics on our Module Directory COMPONENT 08: COMPULSORY WITH OPTIONS BS231-5-AU or BS232-5-SP (15 CREDITS) This module aims to prepare you for carrying out an individual scientific investigation on a topic relating to your degree. Develop skills to identify a suitable question and then design an experimental approach to obtain data addressing this question. The assessment focuses on your analysis and presentation of these data in a suitable scientific paper format report, on the research, understanding and critical writing about the scientific literature relating to your project. Your oral project presentation skills and response to questions, the planning and management of your project work, your progress reflection and your employability skills will also be evaluated. View Research Project in Life Sciences on our Module Directory How does modern biology affect our day-to-day lives? Consider the impact of recent advances on society. Transgenic crops, ever-increasing (and sometimes unwanted) prolongation of life, cloning of animals – to what extent can science be allowed to manipulate nature? And who has the final say? View Issues in Biomolecular Science on our Module Directory Building upon knowledge gained in previous years, you discuss the mathematical and structural models used to gauge enzyme activity, the mechanisms of allostery and the experimental basis on which the various models of allostery may be distinguished. You also explore the mechanism of action of the dehydrogenases and the steady state mechanisms of multi-site enzymes. View Structural and Molecular Enzymology on our Module Directory Biomembranes are of fundamental importance in determining the organisation and functioning of living cells. Biophysical and biochemical methods to study membranes will be discussed alongside the specific roles of membranes in the signal transduction, ion and solute transport and energy storage in cells. Energy generation and transformation by membranes is an essential feature of all cells: membrane electron transport processes will be discussed (with particular attention being given to respiratory and photosynthetic processes), together with the chemiosmotic theory for ATP synthesis by membranes. A bottom up approach building from basic thermodynamics to observed macroscopic effects and biological function is taken. Particular emphasis is placed on the quantitative description of chemical free energy changes and electron transfer reactions allowing students to analyse and interpret biophysical data in the context of actual experiments. View Biomembranes and Bioenergetics on our Module Directory The aim of this module is to provide you with current knowledge and understanding of cancer. We will discuss general aspects of cancer biology (cancer statistics and risk factors, origins and multistage nature of cancer, metastasis and angiogenesis). The identification and isolation of oncogenes and tumour suppressors and the mechanism of action of their products will be analysed. We will explore cancer molecular biology and signalling pathways in cancer. We will discuss cell cycle and apoptosis and their role in the maintenance of normal cell populations and in the emergence of cancer. The principles of some of the current approaches in cancer therapy will be discussed. View Molecular Basis of Cancer on our Module Directory COMPONENT 06: OPTIOL Option from list (15 CREDITS) In recent years, a drive toward sustainable development has led to a green revolution in chemistry. Renewable raw materials, and even waste products, can be worked by microorganisms to create useful products ranging from fuels to food supplements, reducing reliance on non-sustainable, petroleum-based products. In this module you explore the advantages and disadvantages of biological vs traditional chemical processes, learn about the fundamental mechanisms that underpin industrial biotechnology, consider the importance of biological diversity, and gain an understanding of the main applications of biotechnology in industry, focusing on novel technologies. View Industrial Biotechnology on our Module Directory The development of techniques to manipulate and analyse nucleic acids has revolutionised the study of biology, and provided the key driver for massive expansion in biotechnology. You explore the major tools used in gene technology and gain a practical understanding of how they are used, as well as the molecular techniques that can be used to explore biological questions. Gain an understanding of the impact of gene technology and synthetic biology and explore the applications of genome scale methods for studying gene expression in biotechnology and molecular medicine. View Gene Technology and Synthetic Biology on our Module Directory Explore the features and properties of proteins, and examine how they are related to function, as well as their wider role within important biological processes. Getting hands-on, you produce, isolate, purify and characterise proteins with biotechnological potential, as well gaining valuable experience in obtaining and analysing proteomic data. View Protein Technologies and Proteomics on our Module Directory The aim of this module is for you to carry out an independent scientific investigation on a topic relating to your degree specialisation. You should find this to be both stimulating and of particular importance for your future career, because it will provide you with the opportunity to analyse a system in some depth and to further develop your skills in the analysis and interpretation of data. View Independent Research (MSci) on our Module Directory The sequencing of the human genome is one of the biggest achievements of this century. Nowadays, genomics is leading to major advances in biotechnology and molecular medicine, such as enhanced diagnostic tools, better vaccines, improved treatments for disease, and better detection of pollutants. In this module, you gain an understanding of current genomics approaches, including genome sequencing and comparative genomics. You also learn how to study your own genomic data, using state-of-the-art computational resources. View Genomics on our Module Directory Gain invaluable insight into the functioning of the Biotechnology and Pharmaceutical industries, investigate some of the most timely and contentious topics in Biotechnology, and develop transferable professional and research skills to enhance your chances of securing employment in the field. View Professional Skills and the Business of Biosciences on our Module Directory


Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the four-year Integrated Masters.


Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the four-year Integrated Masters.


Teaching

  • Courses are taught by a combination of lectures, laboratory work, assignments, and individual and group project activities
  • Gain experience collating and interpreting data, and reporting findings clearly and concisely


Assessment

  • Our modules are assessed by a combination of exams, essays, presentations and written reviews
  • Contribute towards real-world research projects
SHOW MORE