Typical Job Titles
Optics Technology Supervisor | Planetarium Director |
Data Analyst |
Astrophysical Sciences and Technology
Master of Science Degree
The degree in astrophysics focuses on the underlying physics of phenomena beyond the Earth, and on the development of the technologies, instruments, data analysis, and modeling techniques that will enable the next major strides in the field.
RIT’s master’s in astrophysics offers students a wide range of frontier research topics in areas including multi-wavelength astrophysics, instrumentation and detector technology, computational astrophysics and gravitational wave astronomy and numerical relativity. Our guiding principle is to provide an intellectually demanding program within an informal, student-centered and supportive environment.
At RIT, you have the flexibility to tailor your plan of study to emphasize astrophysics (including observational and theoretical astrophysics), computational and gravitational astrophysics (including numerical relativity and gravitational wave astronomy), or astronomical technology (including detector and instrumentation research and development).
Pursue research interests in a wide range of topics, including design and development of novel detectors, multiwavelength studies of proto-stars, active galactic nuclei and galaxy clusters, gravitational wave data analysis, and theoretical and computational modeling of astrophysical systems including galaxies and compact objects such as binary black holes.
Depending on research interests, you may participate in one of three research centers at RIT: the Center for Computational Relativity and Gravitation (Video), the Center for Detectors or the Laboratory for Multi-wavelength Astrophysics.
A degree in astrophysics at RIT consists of four core courses, two to four elective courses, two semesters of graduate seminar, and a research project culminating in a thesis.
During the first year, you will begin a research project under the guidance of a faculty research advisor. Focus on the project becomes more significant during the second year after the core courses have been completed. A thesis committee is appointed by the program director and oversees the final defense of the thesis, which consists of a public oral presentation by the student, followed by a closed-door examination by the committee.
Alumni of our programs most often work in research positions or education programs ranging from K-12 to higher education. Alumni also are successful in computing, information technology, federal government, and imaging technology.
As a standalone research degree, the MS is a qualification for positions in data analysis or an entry into numerous other careers ranging from education to federal government. The MS also provides a stepping stone to a Ph.D.
For those who want to pursue a career in research, a Ph.D. provides an essential qualification. It opens the door to positions such as a university professor or staff scientist in institutions such as NASA, and to many other careers in STEM requiring analytical capabilities.
Students in the MS degree program who have excelled in their course work and research project may be permitted, by program approval, to transition into the doctoral degree in astrophysical sciences and technology, with the MS thesis defense serving as the Ph.D. qualifying examination. Such a transition from MS to Ph.D. is contingent on the availability of an advisor and research funding.
This program is available on-campus only.
Full-time study is 9+ semester credit hours. Part-time study is 1-8 semester credit hours. International students requiring a visa to study at the RIT Rochester campus must study full-time.
To be considered for admission to the Astrophysical Sciences and Technology MS program, candidates must fulfill the following requirements:
International applicants whose native language is not English must submit one of the following official English language test scores. Some international applicants may be considered for an English test requirement waiver.
International students below the minimum requirement may be considered for conditional admission. Deaf and hard-of-hearing test takers with significant hearing loss do not need to take the listening and speaking sections for the TOEFL and IELTS. Each program requires balanced sub-scores when determining an applicant’s need for additional English language courses.
The astrophysical sciences and technology program offers students a wide range of research opportunities spanning observational and theoretical astrophysics, computational astrophysics, general relativity and gravitational wave astronomy, and the design and development of advanced detectors and instrumentation for astronomy. RIT hosts a vibrant astronomy and astrophysics research community of more than 60 faculty, post-docs, research fellows, and graduate students who participate in three designated research centers:
Faculty and students frequently obtain data from space observatories including the Hubble Space Telescope, the Spitzer Space Telescope, the Chandra X-ray Observatory, the Herschel Space Observatory, and various ground-based observatories such as the Gemini Observatory, twin 8.1-meter diameter optical/infrared telescopes located in Hawaii and Chile, the W. M. Keck Observatory on Hawaii, and the Very Large Array radio telescope facility in New Mexico. RIT is a member of the LIGO Scientific Collaboration, which analyzes the data taken by the Laser Interferometer Gravitational-Wave Observatory, and a member of the Legacy Survey of Space Time Corporation, which will operate an 8.4 m telescope at the Vera C. Rubin Observatory in Chile, to conduct a 10-year survey of the Southern skies.
Computing facilities include the GravitySimulator supercomputer, dedicated to N-body simulations of galactic nuclei and stellar clusters and the NewHorizons computer cluster, for numerical relativity and relativistic hydrodynamics simulations. Funding has recently been obtained to acquire an even more powerful 600-core cluster (BlueSky). Researchers at RIT's Center for Computational Relativity and Gravitation also have access to national supercomputing facilities, such as the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
RIT’s Center for Detectors operates extensive research laboratory facilities: the Rochester Imaging Detector Laboratory, Lobozzo Photonics Lab, Integrated Photonics Lab, Experimental Cosmology Lab, Suborbital Astrophysics Lab, Laboratory for Advanced Instrumentation Research, Expitaxially-Integrated Nanoscale Systems Lab, Quantum Imaging and Information Lab, and the Electrical and Optical Characterization Lab. The Center also has access to state-of-the-art simulation software, and machining and electronic assembly facilities, such as the Semiconductor & Microsystems Fabrication Lab and the Center for Electronics Manufacturing and Assembly.
Faculty involved in the astrophysical sciences and technology program regularly attract substantial external research funding from national and state agencies, including funding support from NASA, National Science Foundation, NYSTAR (Empire State Development Division of Science, Technology, and Innovation), amounting to over $12 million in the last four years.
Current research interests include:
The degree in astrophysics focuses on the underlying physics of phenomena beyond the Earth, and on the development of the technologies, instruments, data analysis, and modeling techniques that will enable the next major strides in the field.
There has never been a more exciting time to obtain an astronomy degree and study the universe beyond the confines of the Earth. A new generation of advanced ground-based and space-borne telescopes and enormous increases in computing power are enabling a golden age of astrophysics. RIT’s astronomy degree has a multidisciplinary emphasis that sets it apart from conventional astrophysics graduate programs at traditional research universities.
RIT’s master’s in astrophysics offers students a wide range of frontier research topics in areas including multi-wavelength astrophysics, instrumentation and detector technology, computational astrophysics and gravitational wave astronomy and numerical relativity. Our guiding principle is to provide an intellectually demanding program within an informal, student-centered and supportive environment.
At RIT, you have the flexibility to tailor your plan of study to emphasize astrophysics (including observational and theoretical astrophysics),computational and gravitational astrophysics (including numerical relativity, gravitational wave astronomy), or astronomical technology (including detector and instrumentation research and development).
Pursure research interests in a wide range of topics, including design and development of novel detectors, multiwavelength studies of proto-stars, active galactic nuclei and galaxy clusters, gravitational wave data analysis, and theoretical and computational modeling of astrophysical systems including galaxies and compact objects such as binary black holes.
RIT’s astrophysics research areas include:
Depending on research interests, you may participate in one of three research centers at RIT: the Center for Computational Relativity and Gravitation (Video), the Center for Detectors or the Laboratory for Multi-wavelength Astrophysics.
A degree in astrophysics at RIT consists of four core courses, two to four elective courses, two semesters of graduate seminar, and a research project culminating in a thesis.
During the first year, you will begin a research project under the guidance of a faculty research advisor. Focus on the project becomes more significant during the second year after the core courses have been completed. A thesis committee is appointed by the program director and oversees the final defense of the thesis, which consists of a public oral presentation by the student, followed by a closed-door examination by the committee.
Alumni of our programs most often work in research positions or education programs ranging from K-12 to higher education. Alumni also are successful in computing, information technology, federal government, and imaging technology.
As a standalone research degree, the MS is a qualification for positions in data analysis or an entry into numerous other careers ranging from education to federal government. The MS also provides a stepping stone to a Ph.D.
For those who want to pursue a career in research, the Ph.D. provides an essential qualification. It opens the door to positions such as a university professor or staff scientist in institutions such as NASA, and to many other careers in STEM requiring analytical capabilities.
Students in the MS degree program who have excelled in their course work and research project may be permitted, by program approval, to transition into the doctoral degree in astrophysical sciences and technology, with the MS thesis defense serving as the Ph.D. qualifying examination. Such a transition from MS to Ph.D. is contingent on the availability of an advisor and research funding.
Students are also interested in: Astrophysical Sciences and Technology Ph.D., Physics MS
Optics Technology Supervisor | Planetarium Director |
Data Analyst |
What makes an RIT science and math education exceptional? It’s the ability to complete science and math co-ops and gain real-world experience that sets you apart. Co-ops in the College of Science include cooperative education and internship experiences in industry and health care settings, as well as research in an academic, industry, or national lab. These are not only possible at RIT, but are passionately encouraged.
What makes an RIT education exceptional? It’s the ability to complete relevant, hands-on career experience. At the graduate level, and paired with an advanced degree, cooperative education and internships give you the unparalleled credentials that truly set you apart. Learn more about graduate co-op and how it provides you with the career experience employers look for in their next top hires.
The Office of Career Services and Cooperative Education offers National Labs and federally-funded Research Centers from all research areas and sponsoring agencies a variety of options to connect with and recruit students. Students connect with employer partners to gather information on their laboratories and explore co-op, internship, research, and full-time opportunities. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Recruiting events include our university-wide Fall Career Fair, on-campus and virtual interviews, information sessions, 1:1 networking with lab representatives, and a National Labs Resume Book available to all labs.